SCIENTIFIC SESSIONS

16 November, 8–9:45 am
111: Malaria: Diagnostics
Marriott, Marquis D
- 1255—Development and clinical performance of a high throughput loop-mediated isothermal amplification system for the detection of malaria

112: Kinetoplastida: Diagnosis, Treatment and Vaccine Development
Marriott - Room M103/M104/M105
- 519—A loop-mediated isothermal amplification (LAMP) kit for molecular detection of Trypanosoma cruzi DNA: a feasibility study
- 1267—Towards sensitive and less invasive diagnosis of visceral leishmaniasis in Sudan using LAMP

POSTER SESSIONS

14 November, 12–1:45pm
Session A
- 268—Assessment of loop mediated isothermal DNA amplification (LAMP) method for asymptomatic malaria screening in the Peruvian Amazon settings
- 274—Costs and affordability of LAMP for molecular diagnosis of malaria in resource-limited, endemic settings
- 279—Coverage and impact of the WHO-FIND Malaria RDT Evaluation Programme: shaping the global malaria RDT market
- 519—A loop-mediated isothermal amplification (LAMP) kit for molecular detection of Trypanosoma cruzi DNA: a feasibility study
- 524—Clinical evaluation of a rapid diagnostic test for gambiense human African trypanosomiasis developed using recombinant antigens
- 525—Improved access to diagnostics for rhodesiense sleeping sickness around a conservation area in Malawi results in reduced mortality

15 November, 12–1:45pm
Session B
- 887—Guiding the development of improved diagnostics for malaria: limit of detection of current diagnostic tests
- 1523—Supporting the implementation of malaria rapid diagnostic tests (RDTs): tools for quality control and assessment in endemic settings
- 1680—Target Product Profile for a diagnostic assay to differentiate between bacterial and non-bacterial infections to guide antimicrobial use in resource-limited settings: An expert consensus

FIND turns complex diagnostic challenges into simple solutions to overcome diseases of poverty & transform lives

FIND us at ASTMH 2016!

16 November, 12–1:45 pm
Session C
- 1255—Development and clinical performance of a high throughput loop-mediated isothermal amplification system for the detection of malaria