

DEFINING
PRODUCT NEEDS:
PRODUCT
REQUIREMENTS

♦ Olga Ordeig

TOPICS

- 1 The importance of fit-for-purpose diagnostics
- 2 Product Requirements vs Design Inputs
- 3 Requirements from Target Use Settings

DIAGNOSTIC SOLUTIONS MUST BE ADAPTED FOR THE PEOPLE WHO NEED IT

AND THE CONTEXT IN WHICH THEY WILL USE IT

care

DIAGNOSTIC SOLUTIONS MUST BE ADAPTED FOR THE PEOPLE WHO NEED IT

FIT FOR PURPOSE DIAGNOSTICS

No mains power

No water

- No lab equipment
- No temperature control

No mains power (unreliable)

- Minimal lab equipment (may not support cold chain)
- BSL-1 containment

Mains power (may be intermittent)

- Basic lab equipment (biosafety cabinet, centrifuge, calibrated pipets, fridge)
- BSL-2/1 containment

Suitable IVD technologies

Instrument free True POC

Instrument free
True POC
Near POC

Near POC Laboratory IVD

PRODUCT REQUIREMENTS VS DESIGN INPUTS

WHAT & WHY

Product Requirements

Product Requirements Document:

provides an overview of the product's purpose, intended use, and high-level requirements (minimal and optimal) to ensure it meets user needs and regulatory standards.

EXAMPLE

Hemoglobin content should not interfere with the test result

HOW

Design Inputs

Design Input Document:

details the precise technical and performance criteria the product must meet, including accuracy, sensitivity, stability, and environmental conditions.

EXAMPLE

Test signal can vary +/- 10% with hemoglobin levels <20 g/dL.

PRODUCT REQUIREMENTS

Examples of relevant categories/aspects for product requirements consideration:

Market Need Why is the product needed?	Intended Use Purpose of your device What the test does / how it works	Indications for Use Circumstances under which the test will be used Target Settings Where the test will be used? Analytical & Clinical Performance (e.g. LoD, sen., spe.) Target COGs What is the target cost?	
Target Markets Where is the test going to be sold?	Procurement Who will buy the product?		
Target Analyte Which analyte to test?	Specimen Type (e.g. swap, urine, blood)		
Operational Characteristics (e.g. shelf life, stability)	Test Format (e.g. LFT, strip, ELISA)		
Device Classification Based on Risk associated with Intended Use of test	Waste Management Test disposal after use	Digital / Connectivity Data storage, sharing	

PRODUCT REQUIREMENTS

Examples of relevant categories/aspects for product requirements consideration:

Market Need Why is the product needed?	Intended Use Purpose of your device What the test does / how it works	Indications for Use Circumstances under which the test will be used		
Target Markets Where is the test going to be sold?	Procurement Who will buy the product?	Target Settings Where the test will be used?		
Target Analyte Which analyte to test?	Specimen Type (e.g. swap, urine, blood)	Analytical & Clinical Performance (e.g. LoD, sen., spe.)		
Operational Characteristics (e.g. shelf life, stability)	Test Format (e.g. LFT, strip, ELISA)	Target COGs What is the target cost?		
Device Classification Based on Risk associated with Intended Use of test	Waste Management Test disposal after use	Digital / Connectivity Data storage, sharing		

REQUIREMENTS FROM TARGET USE SETTINGS

	Self-Testing	Level 0 (L0) Community	Level 1 (L1) Primary Care	Level 2 (L2) District Hospital Lab	Level 3 (L3) Regional/Provincial Lab	Level 4 (L4) Reference/National Lab
Use setting	Home testing	Community outreachHome testing	Primary care facility	 Near-patient laboratory Referral hospital laboratory Emergency Department testing 	 Near-patient laboratory Referral hospital laboratory Emergency Department testing 	Reference laboratory
Infrastructure	 No mains power No water No lab equipment No environmental control (e.g., temp, dust, humidity) 	 No mains power No water No lab equipment No environmental control (e.g., temp, dust, humidity) 	 No mains power (unreliable) Minimal lab equipment (may not support cold chain) BSL-1 containment No environmental control (e.g., temp, dust, humidity) 	 Mains power (may be intermittent) Basic lab equipment (biosafety cabinet, centrifuge, calibrated pipets, fridge) -20 freezers (some) BSL-2/1 containment (some) Environmental control 	 Mains power (may be intermittent) Basic lab equipment (biosafety cabinet, centrifuge, calibrated pipets, fridge) -20 freezers BSL-2/1 containment Environmental control 	 Mains power (reliable) High infrastructure facility -20 freezers -80 freezers (some) BSL-2/3 containment Environmental control (e.g., temp, dust, humidity)
Operator skill	 Self-testing Simple reagent/sample transfer 	 Nurse/pharmacist Community health workers Simple reagent/sample transfer 	 Nurse Trained laboratory worker Minimal sample processing (≤ 3 steps) 	 Laboratory technician (1-2 year certif) Sample processing with calibrated volumes (≤ 3 steps) 	 Laboratory technician (1-2 year certif) Sample processing with calibrated volumes (≤ 3 steps) 	 Science research specialists Laboratory technician (1-2 year certif)
Specimen capacity	 Can process minimally invasive samples: fingerstick blood, nasal swabs, saliva, urine 	Can process minimally invasive samples: fingerstick blood, nasal swabs, saliva, urine	Can process upper respiratory specimens; clinic may not have capacity for lower respiratory, venipuncture, plasma	Can process most BSL-2 specimens; depends on clinic sample capacity	Can process most BSL-2 specimens; depends on clinic sample capacity	Can process most BSL2/3 specimens
Test capacity	True-POC MDx (some)RDT	True-POC MDx (some) RDT	True-POC MDxBasic microscopyRDT	 Near-POC MDx ELISA with simple reader Microscopy RDT Clinical chemistry (some) 	 Blood culture and microbiology capacity Near-POC MDx ELISA with simple reader Microscopy RDT Clinical chemistry 	 Blood culture and microbiology capacity Lab MDx / PCR / LDT ELISA/EIA/CLIA/PRNT Clinical chemistry Sequencing (some) Mass spectrometry (some)

DESIGN FOR THE ENVIRONMENT WHERE THE TEST ARE USED

Example for an instrumented diagnostic in LMIC settings:

TARGET USE SETTINGS

Healthcare level
Electricity outage
No climate control
High dust
Limited lab equipment
Staff with no or limited training

INSTRUMENT DESIGN

Size Weight

Throughput

Operating range

Biosafety

Maintenance & calibration

Data display

Connectivity

Data export

Low COGS

REAGENT and ASSAY

Kits & Bundle

Specimen

Sample volume

Sample preparation

Time to result

Controls

Transportation

Stability

Low COGS

DESIGN FOR THE ENVIRONMENT WHERE THE TEST ARE USED

Example for an instrumented diagnostic in LMIC settings:

TARGET USE SETTINGS

Healthcare level

Electricity outage

No climate control

High dust

Limited lab equipment

Staff with no or limited training

INSTRUMENT DESIGN

Size

Weight

Throughput

Operating range

Biosafety

Maintenance & calibration

Data display

Connectivity

Data export

Low COGS

REAGENT and ASSAY

Kits & Bundle

Specimer

Sample volume

Sample preparation

Time to result

Controls

Transportation

Stability

Low COGS

A LESSON IN COMMUNICATION AND COLLABORATION

KEY TAKEAWAYS

1

If you're working on a new product, take the time to create a PRD. It will save you time and money in the long run and increase the chances of success for your product.

2

Benefits to having a well-written PRD are:

- Clarifying the product vision and goals.
- Defining the target market and user requirements.
- Facilitate alignment among stakeholders.
- Improve changes of success for the product.
- Reduce the risk of scope creep.

