DEFINING PRODUCT NEEDS: PRODUCT REQUIREMENTS ♦ Olga Ordeig # **TOPICS** - 1 The importance of fit-for-purpose diagnostics - 2 Product Requirements vs Design Inputs - 3 Requirements from Target Use Settings ### DIAGNOSTIC SOLUTIONS MUST BE ADAPTED FOR THE PEOPLE WHO NEED IT ## AND THE CONTEXT IN WHICH THEY WILL USE IT care ### DIAGNOSTIC SOLUTIONS MUST BE ADAPTED FOR THE PEOPLE WHO NEED IT ## FIT FOR PURPOSE DIAGNOSTICS No mains power No water - No lab equipment - No temperature control No mains power (unreliable) - Minimal lab equipment (may not support cold chain) - BSL-1 containment Mains power (may be intermittent) - Basic lab equipment (biosafety cabinet, centrifuge, calibrated pipets, fridge) - BSL-2/1 containment Suitable IVD technologies Instrument free True POC Instrument free True POC Near POC Near POC Laboratory IVD # PRODUCT REQUIREMENTS VS DESIGN INPUTS ### **WHAT & WHY** ## **Product Requirements** ## **Product Requirements Document:** provides an overview of the product's purpose, intended use, and high-level requirements (minimal and optimal) to ensure it meets user needs and regulatory standards. ### **EXAMPLE** Hemoglobin content should not interfere with the test result ### HOW ## **Design Inputs** ## **Design Input Document:** details the precise technical and performance criteria the product must meet, including accuracy, sensitivity, stability, and environmental conditions. #### **EXAMPLE** Test signal can vary +/- 10% with hemoglobin levels <20 g/dL. # PRODUCT REQUIREMENTS Examples of relevant categories/aspects for product requirements consideration: | Market Need
Why is the product needed? | Intended Use Purpose of your device What the test does / how it works | Indications for Use Circumstances under which the test will be used Target Settings Where the test will be used? Analytical & Clinical Performance (e.g. LoD, sen., spe.) Target COGs What is the target cost? | | |--|---|---|--| | Target Markets Where is the test going to be sold? | Procurement Who will buy the product? | | | | Target Analyte Which analyte to test? | Specimen Type
(e.g. swap, urine, blood) | | | | Operational Characteristics (e.g. shelf life, stability) | Test Format
(e.g. LFT, strip, ELISA) | | | | Device Classification Based on Risk associated with Intended Use of test | Waste Management
Test disposal after use | Digital / Connectivity Data storage, sharing | | # PRODUCT REQUIREMENTS Examples of relevant categories/aspects for product requirements consideration: | Market Need
Why is the product needed? | Intended Use Purpose of your device What the test does / how it works | Indications for Use
Circumstances under which the
test will be used | | | |---|---|---|--|--| | Target Markets Where is the test going to be sold? | Procurement Who will buy the product? | Target Settings Where the test will be used? | | | | Target Analyte Which analyte to test? | Specimen Type
(e.g. swap, urine, blood) | Analytical & Clinical Performance (e.g. LoD, sen., spe.) | | | | Operational Characteristics (e.g. shelf life, stability) | Test Format (e.g. LFT, strip, ELISA) | Target COGs What is the target cost? | | | | Device Classification Based on Risk associated with Intended Use of test | Waste Management
Test disposal after use | Digital / Connectivity Data storage, sharing | | | # REQUIREMENTS FROM TARGET USE SETTINGS | | Self-Testing | Level 0 (L0)
Community | Level 1 (L1)
Primary Care | Level 2 (L2)
District Hospital Lab | Level 3 (L3)
Regional/Provincial Lab | Level 4 (L4)
Reference/National Lab | |-------------------|---|---|---|---|---|--| | Use setting | Home testing | Community outreachHome testing | Primary care facility | Near-patient laboratory Referral hospital
laboratory Emergency Department
testing | Near-patient laboratory Referral hospital
laboratory Emergency Department
testing | Reference laboratory | | Infrastructure | No mains power No water No lab equipment No environmental control (e.g., temp, dust, humidity) | No mains power No water No lab equipment No environmental control (e.g., temp, dust, humidity) | No mains power (unreliable) Minimal lab equipment (may not support cold chain) BSL-1 containment No environmental control (e.g., temp, dust, humidity) | Mains power (may be intermittent) Basic lab equipment (biosafety cabinet, centrifuge, calibrated pipets, fridge) -20 freezers (some) BSL-2/1 containment (some) Environmental control | Mains power (may be intermittent) Basic lab equipment (biosafety cabinet, centrifuge, calibrated pipets, fridge) -20 freezers BSL-2/1 containment Environmental control | Mains power (reliable) High infrastructure facility -20 freezers -80 freezers (some) BSL-2/3 containment Environmental control (e.g., temp, dust, humidity) | | Operator skill | Self-testing Simple reagent/sample transfer | Nurse/pharmacist Community health
workers Simple reagent/sample
transfer | Nurse Trained laboratory worker Minimal sample processing (≤ 3 steps) | Laboratory technician (1-2 year certif) Sample processing with calibrated volumes (≤ 3 steps) | Laboratory technician (1-2 year certif) Sample processing with calibrated volumes (≤ 3 steps) | Science research
specialists Laboratory technician (1-2
year certif) | | Specimen capacity | Can process minimally
invasive samples:
fingerstick blood, nasal
swabs, saliva, urine | Can process minimally
invasive samples:
fingerstick blood, nasal
swabs, saliva, urine | Can process upper respiratory
specimens; clinic may not have
capacity for lower respiratory,
venipuncture, plasma | Can process most BSL-2
specimens; depends on
clinic sample capacity | Can process most BSL-2
specimens; depends on
clinic sample capacity | Can process most BSL2/3
specimens | | Test capacity | True-POC MDx (some)RDT | True-POC MDx (some) RDT | True-POC MDxBasic microscopyRDT | Near-POC MDx ELISA with simple reader Microscopy RDT Clinical chemistry (some) | Blood culture and microbiology capacity Near-POC MDx ELISA with simple reader Microscopy RDT Clinical chemistry | Blood culture and microbiology capacity Lab MDx / PCR / LDT ELISA/EIA/CLIA/PRNT Clinical chemistry Sequencing (some) Mass spectrometry (some) | ## DESIGN FOR THE ENVIRONMENT WHERE THE TEST ARE USED Example for an instrumented diagnostic in LMIC settings: ### **TARGET USE SETTINGS** Healthcare level Electricity outage No climate control High dust Limited lab equipment Staff with no or limited training #### **INSTRUMENT DESIGN** Size Weight Throughput Operating range Biosafety Maintenance & calibration Data display Connectivity Data export Low COGS ### **REAGENT and ASSAY** Kits & Bundle Specimen Sample volume Sample preparation Time to result Controls Transportation Stability Low COGS ## DESIGN FOR THE ENVIRONMENT WHERE THE TEST ARE USED Example for an instrumented diagnostic in LMIC settings: ### **TARGET USE SETTINGS** Healthcare level **Electricity outage** No climate control **High dust** Limited lab equipment Staff with no or limited training ### **INSTRUMENT DESIGN** Size Weight Throughput ### **Operating range** Biosafety Maintenance & calibration ### **Data display** Connectivity Data export Low COGS ### **REAGENT and ASSAY** #### **Kits & Bundle** Specimer Sample volume Sample preparation Time to result Controls **Transportation** **Stability** Low COGS # A LESSON IN COMMUNICATION AND COLLABORATION ## **KEY TAKEAWAYS** 1 If you're working on a new product, take the time to create a PRD. It will save you time and money in the long run and increase the chances of success for your product. 2 Benefits to having a well-written PRD are: - Clarifying the product vision and goals. - Defining the target market and user requirements. - Facilitate alignment among stakeholders. - Improve changes of success for the product. - Reduce the risk of scope creep.